10 research outputs found

    Form Factors of Few-Body Systems: Point Form Versus Front Form

    Full text link
    We present a relativistic point-form approach for the calculation of electroweak form factors of few-body bound states that leads to results which resemble those obtained within the covariant light-front formalism of Carbonell et al. Our starting points are the physical processes in which such form factors are measured, i.e. electron scattering off the bound state, or the semileptonic weak decay of the bound state. These processes are treated by means of a coupled-channel framework for a Bakamjian-Thomas type mass operator. A current with the correct covariance properties is then derived from the pertinent leading-order electroweak scattering or decay amplitude. As it turns out, the electromagnetic current is affected by unphysical contributions which can be traced back to wrong cluster properties inherent in the Bakamjian-Thomas construction. These spurious contributions, however, can be separated uniquely, as in the covariant light-front approach. In this way we end up with form factors which agree with those obtained from the covariant light-front approach. As an example we will present results for electroweak form factors of heavy-light systems and discuss the heavy-quark limit which leads to the famous Isgur-Wise function.Comment: Presented at LIGHTCONE 2011, Dallas, USA, 23 - 27 May, 201

    Point-form quantum field theory

    Full text link
    We examine canonical quantization of relativistic field theories on the forward hyperboloid, a Lorentz-invariant surface of the form xμxμ=τ2x_\mu x^\mu = \tau^2. This choice of quantization surface implies that all components of the 4-momentum operator are affected by interactions (if present), whereas rotation and boost generators remain interaction free -- a feature characteristic of Dirac's `` point-form\rq\rq of relativistic dynamics. Unlike previous attempts to quantize fields on space-time hyperboloids, we keep the usual plane-wave expansion of the field operators and consider evolution of the system generated by the 4-momentum operator. We verify that the Fock-space representations of the Poincar\'e generators for free scalar and spin-1/2 fields look the same as for equal-time quantization. Scattering is formulated for interacting fields in a covariant interaction picture and it is shown that the familiar perturbative expansion of the S-operator is recovered by our approach. An appendix analyzes special distributions, integrals over the forward hyperboloid, that are used repeatedly in the paper.Comment: 30 page

    Boost operators in Coulomb-gauge QCD: the pion form factor and Fock expansions in phi radiative decays

    Get PDF
    In this article we rederive the Boost operators in Coulomb-Gauge Yang-Mills theory employing the path-integral formalism and write down the complete operators for QCD. We immediately apply them to note that what are usually called the pion square, quartic... charge radii, defined from derivatives of the pion form factor at zero squared momentum transfer, are completely blurred out by relativistic and interaction corrections, so that it is not clear at all how to interpret these quantities in terms of the pion charge distribution. The form factor therefore measures matrix elements of powers of the QCD boost and Moeller operators, weighted by the charge density in the target's rest frame. In addition we remark that the decomposition of the eta' wavefunction in quarkonium, gluonium, ... components attempted by the KLOE collaboration combining data from phi radiative decays, requires corrections due to the velocity of the final state meson recoiling against a photon. This will be especially important if such decompositions are to be attempted with data from J/psi decays.Comment: 14 pages, 4 figure

    8 Social Hierarchy: The Self‐Reinforcing Nature of Power and Status

    No full text

    Norms in Mixed Sex and Mixed Race Work Groups

    No full text
    corecore